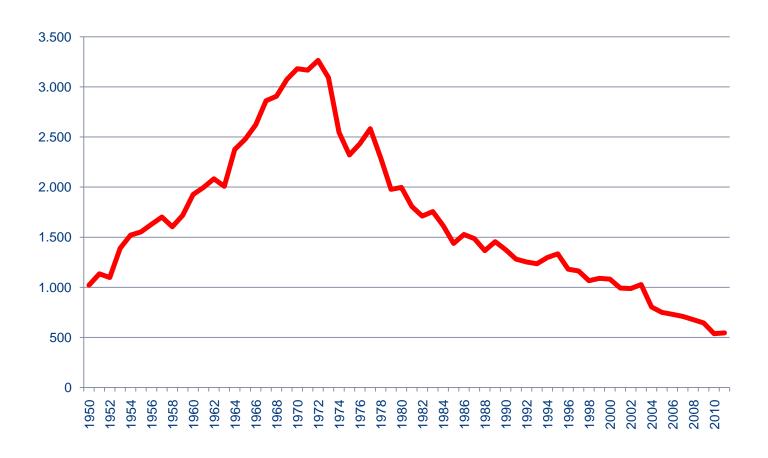


Road Safety in the Netherlands – from vision to practice and to success

Professor Fred Wegman


SWOV Institute for Road Safety Research

Delft University of Technology

The Netherlands

Road fatalities in the Netherlands

- Driving Down
- the Road Toll

- Professor Fred Wegman
- Adelaide Thinker in Residence

Research from South Australia

Data source	Extreme behaviour (%)	Illegal + system failure (%)	System failure (%)
Fatal crashes 2008	43.4%	22.9	33.7
Non-fatal metropolitan injuries 2002- 2005	3.3	9.9	86.8
Non-fatal rural crashes 1998- 2000	9.4	16.6	74.0

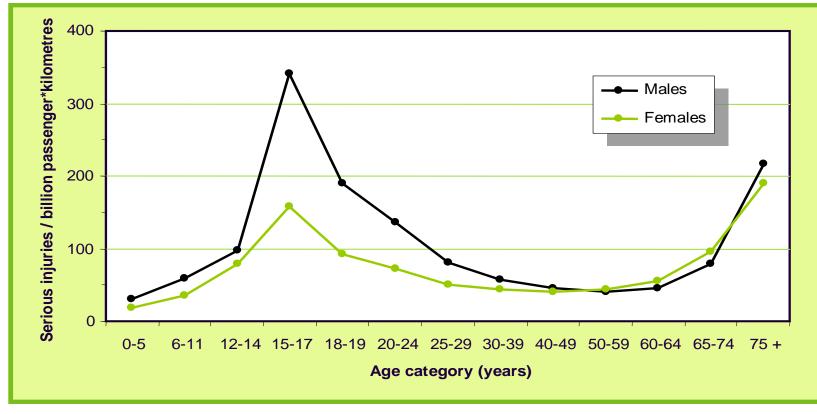
Lisa Wundersitz & Matthew Baldock: The relative contribution of system failures and extreme behaviour in South Australian crashes (2011)

Not only fatalities

- Fatal crashes and injury crashes are not telling the same story
- Fatal crashes are not telling the whole story
- Injuries form a substantial proportion of road crash costs (NL 50%)
- Major problems with data on injury crashes: definitions, data quality, international comparability
- European Union: a common "injuries reduction target"
- 2011 IRTAD report 'Reporting on serious road traffic casualties'

Table of contents

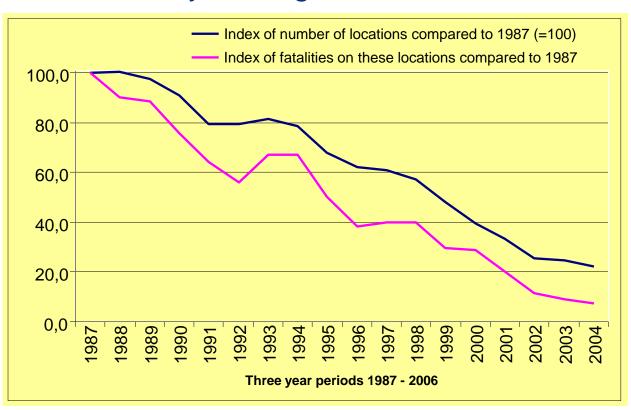
- Describing and explaining progress in road safety
- Implementing effective interventions
- Towards a Safe System approach: for example the Dutch Sustainable Safety
- Special emphasis on crashes with motorised twowheelers
- How to speed up your learning curve?
- Let the Dutch story inspire you, don't try to copy it!


Traditional, reactive and, effective approach

- Based on an analysis of crashes in the past
 - Looking after high numbers
 - Looking after high shares
 - Looking after negative developments
- Trying to identify high rates/risks
 - Identify risk increasing factors
 - Reduce relatively high risks
- Trying to understand risk differences
 - I = E x C/E x I/C (Exposure x Crash risk x Injury risk)
 - Safety performance indicators SPI's

For example: age-related rates/risks

Effective interventions in traditional areas ('evidence based interventions')


- Human behaviour (legislation + enforcement)
 - Speed, alcohol, seat belts and safety helmets
 - Driver education, schools, mass-media campaigns
- Infrastructure: planning, black spots, safe designs,
- Safe vehicles, crashworthiness, inspection, special attention for trucks/buses and motorised two wheelers
- Post-crash response
- Always new developments: such as drugs, mobile phones, ageing society

Pillar 1	Pillar 2	Pillar 3	Pillar 4	Pillar 5
Road safety	Safer roads	Safer vehicles	Safer road	Post-crash
management	and mobility		users	response

Example #1: Dutch high risk locations

Less than 2% of road deaths at high risk locations; was 10% 15 years ago

Example #2: Drinking and driving

- Drinking and driving is involved in less than 1% of kilometres travelled
- Drink-driving is seen as socially unacceptable
- Only a few percent is above the legal limit (0.05%)
- Remaining offenders have a rather high BAC
- So, almost no offenders, but those who offend, do that substantially, and they are overrepresented in severe crashes (20% of fatal crashes)
- We need to develop targeted new strategies for 'high-core offenders'!
- And/or, eliminating drinking and driving: alcolock?

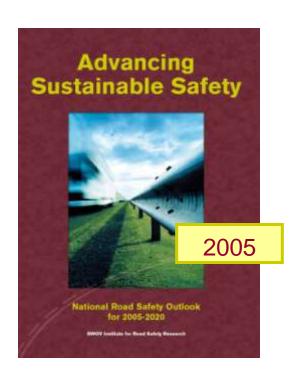
Which road safety problems remain?

- More and more a diffuse problem; sharp edges have been eliminated; remaining problems are more and more realted to basic risk factors in traffic and generic/inherent problems
- Besides that, specific problems because of risk increasing factors: novice road users, alcohol/drugs, fatigue, distraction, etc.
- Traditional, reactive approach is coming to the end of its life-cycle

Our road traffic today is still inherently dangerous

How to deal with 'problems that remain'?

- Both (generic) basic factors and risk-increasing factors have been and will be relevant
- The relative importance of generic problems have increased over time and of specific problems has decreased
- The character of future interventions on reducing risk factors will be different, because the nature of remaining problems will be different
- Road safety policies will need to shift focus towards generic problems and less towards specific problems



Our fundamental road safety problem

- Today's road traffic is inherently unsafe
- The road system of today has not been designed with safety in mind, as is the case with air transport or rail transport
- Which means we are almost fully dependent on whether a road user makes a mistake or error in preventing a crash
- Another approach is needed: Safe System Approach

Sustainable Safety: the first example of a Safe System Approach

Aims

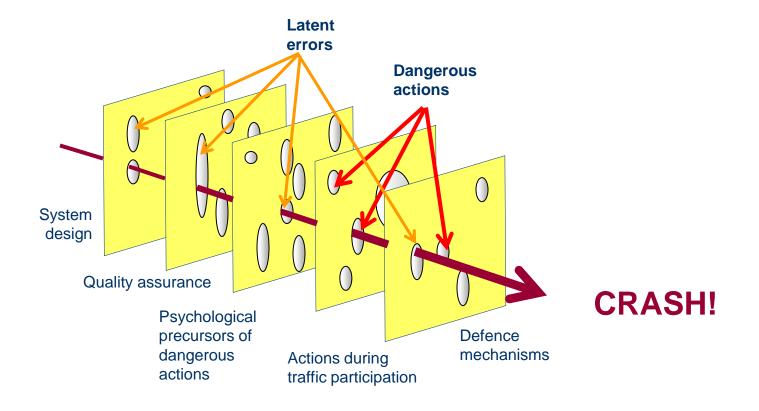
 Prevention of serious crashes by eliminating conditions/circumstances where serious crashes can occur

een duurzaam veilig wegverkeer

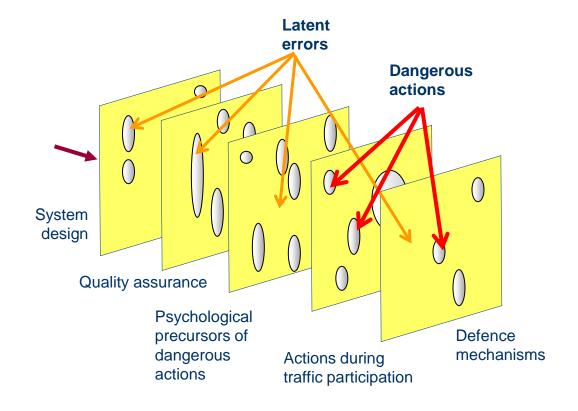
1992

 Reduction/elimination of probability of serious injury when a crash occurs

Copies are downloadable from www.sustainablesafety.nl


Putting people at the center

- 1. The road system should be designed to expect and accomodate *human error*, because it is inevitable that road users make mistakes and sometimes violate the law (and crashes occur); this concept has been accepted and implemented in other sectors of transportation
- 2. In a crash, interaction between vehicle roadway human body must be managed so that serious injury likelihood is minimized, if not eliminated


Proactive Safe System Approach (Swiss cheese model, based on Reason)

Safe System Approach: prevention of system gaps/latent errors

How to avoid crashes by preventing errors and violations in the future?

- Adjust the environment to the human measure in such a way that man commits fewer errors and, consequently, runs a lower risk
 - Make potentially dangerous situations less frequent or even eliminate them
 - Design an environment resulting in fewer errors
 - If errors are committed, let the environment being forgiving for errors
- 2. Deal effectively/efficiently with violations: a) 'normal road users', b) novice drivers and c) excessive behaviour/recidivists/'delinguents'

Preventing 'errors' crucial for cyclists and pedestrians

Main characteristics of Dutch Safe System Approach

- Ethical
 - We don't want to hand over a traffic system to the next generation with current casualty levels
 - A proactive approach
- An integral approach
 - Integrate man, vehicle and road into a safe system
 - The whole network, all vehicles, all road users
- People are the measure of all things
 - Human capacities and limitations are the guiding factors
- Reducing latent errors (system gaps) of the system
- Use criterion of preventable injuries

Expanding traffic calming schemes (inside/outside urban areas)

	1998	2003	2008
Inside urban area			
30km/hour	8.900 (15 %)	29.000 (45%)	50.300 (70 %)
50km/hour	50.600 (85%	36.500 (55%)	21.600 (30%)
Total inside urban area	59.600 (100%)	66.400 (100%)	71.900 (100%)
Outside urban area			
60km/hour	2100 (3 %)	+/- 10.000 (15- 20%)	35.400 (57%)
80km/hour	63.300 (97%)	54.000 (80-85%)	25.500 (43%)
Total outside urban area (excl. motorways)	65.400 (100%)	64.000 (100%)	62.100 (100%)

Development in fatalities: comparing predicted with recorded numbers

Ten years of implementation

- The number of fatalities decreased by an average of more than 5% per year (1998-2007); a more than two times faster decrease than in the ten years before (1988-1997)
- Many measures were implemented, mainly in the area of infrastructure and enforcement
- These measures have with a large degree of probability contributed to this 1998-2007-decrease
- This resulted in a decrease of 300-400 fatalities in 2007, which is more than a 30% reduction
- We invested € 530 million per year; € 350 million on road infrastructure
- The benefits to society exceed the costs by a factor of 4

Safety problems related to motorised two-wheelers

- Growing exposure + high risks
- Own poor behaviour (single vehicle crashes, high speeds, external perturbations)
- Overlooked (perception and appraisal) by other road users (at intersections)
 - Rider hit by a car fails to see rider in time
 - Left turning car fails to see oncoming rider

Improving risks of motorcyclists

- Visibility and conspicouesness
- Safer riding behaviour
- Vehicle measures
- Infrastructure measures
- Protective clothing and helmets
- And reducing exposure?

Lessons learned

- You need bold ideas to meet big challenges
- Sustainable Safety is ambitious and bold, meets a big challenge
- Our approach: from vision/theories/knowledge, to 'capacity building', to implementation, to evaluation and, if appropriate, to adaptation
- Acceptance by decision makers, road authorities and professional road safety community is needed
- Good cooperation between decision makers, research community, road safety managers, and practitioners
- Work on creating acceptance by road users (media!)
- Work with a step-by-step approach

Conclusions

- Based on a Dutch version of a Safe System Approach (Sustainable Safety), actions and packages of measures were implemented (1998-2007)
- A new vision energized the professional community, resulted in more action, gave more focus to actions and improved efficiency of interventions
- Safety improvements observed in infrastructure, human behaviour and vehicles
- Cost beneficial interventions with 30% fatality reduction over 10 years (no real success for serious injuries!)
- Next strategy sent to Parliament last week: 2012 -2020

'If crashes can occur, they will occur'

