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Abstract

The disruption of the circadian system in humans has been associated with the development of chronic illnesses and the
worsening of pre-existing pathologies. Therefore, the assessment of human circadian system function under free living
conditions using non-invasive techniques needs further research. Traditionally, overt rhythms such as activity and body
temperature have been analyzed separately; however, a comprehensive index could reduce individual recording artifacts.
Thus, a new variable (TAP), based on the integrated analysis of three simultaneous recordings: skin wrist temperature (T),
motor activity (A) and body position (P) has been developed. Furthermore, we also tested the reliability of a single
numerical index, the Circadian Function Index (CFI), to determine the circadian robustness. An actimeter and a temperature
sensor were placed on the arm and wrist of the non-dominant hand, respectively, of 49 healthy young volunteers for a
period of one week. T, A and P values were normalized for each subject. A non-parametric analysis was applied to both TAP
and the separate variables to calculate their interdaily stability, intradaily variability and relative amplitude, and these values
were then used for the CFI calculation. Modeling analyses were performed in order to determine TAP and CFI reliability.
Each variable (T, A, P or TAP) was independently correlated with rest-activity logs kept by the volunteers. The highest
correlation (r = 20.993, p,0.0001), along with highest specificity (0.870), sensitivity (0.740) and accuracy (0.904), were
obtained when rest-activity records were compared to TAP. Furthermore, the CFI proved to be very sensitive to changes in
circadian robustness. Our results demonstrate that the integrated TAP variable and the CFI calculation are powerful
methods to assess circadian system status, improving sensitivity, specificity and accuracy in differentiating activity from rest
over the analysis of wrist temperature, body position or activity alone.
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Introduction

Circadian system disruption in humans has been associated with

the development of chronic illnesses and worsening of pre-existing

conditions such as cancer, premature ageing, metabolic syndrome,

cardiovascular diseases, cognitive impairment and mood disorders

(for a review, see [1]). Therefore, proper assessment of the

circadian system function under normal living conditions using

non-invasive techniques is a current issue in need of further

research [2–5].

The circadian system consists of a set of structures involved in

the generation of circadian rhythms in behavioral, physiological

and biochemical variables, as well as in the external and internal

synchronization of these variables to environmental cues and to

each other, respectively. Three different approaches have been

developed to determine circadian system function in humans.

Many researchers have measured the output of the hypothala-

mus’s major circadian clock, the suprachiasmatic nuclei (SCN),

after trying to eliminate all influence from the external factors

(masking factors) that may affect the variable being measured. One

example may be the use of constant 48-h routine protocols in

which the subjects were kept under constant light, temperature

and body position, and frequently fed isocaloric snacks [6], or the

forced desynchronization of the internal time clock by forcing

individuals to live according to sleep-wake cycles outside their

entrainment limits, i.e., 28h or 20h [7]. A second approach

consists of recording rhythmic variables in subjects under

controlled environmental conditions, after which it becomes

necessary to use mathematical procedures in a demasking process

to eliminate the effect of the rhythmic environment [8,9]. Finally,

the third approach is based on recording circadian marker

rhythms in subjects under normal living conditions, with the

underlying assumption that masking and clock-controlled process-

es are both important to allow humans to cope with environmental
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rhythmic challenges [10]. This last approach is the only way to

assess the functionality of the circadian system in humans over

long periods of time under normal living conditions.

Theoretically, most overt rhythms controlled by the circadian

clock, which can be measured easily and with minimal subject

discomfort, can be used as marker rhythms to assess circadian

system function [2]. In practice, the most widely used rhythms are

melatonin, cortisol, core body temperature and rest-activity cycles

[11,12]. The melatonin rhythm is considered to be one of the most

reliable marker rhythms; however, its measurement is time

consuming, and plasma or saliva sampling requires an intravenous

catheter or the subject’s active collaboration, respectively. More-

over, the melatonin rhythm in subjects under normal living

conditions can be masked by a number of factors including posture,

exercise, sleep or sleep deprivation, caffeine, certain drugs, such as

beta-blockers and NSAIDS, and, in particular, nocturnal light

exposure [13]. Cortisol is also used as a marker rhythm; however, it

is subjected to ultradian rhythmicity and is masked by many factors,

such as physical exercise, physiological stress, lighting conditions,

the sleep-wake cycle and high-protein intake [14–16].

Core body temperature rhythm (CBT) is frequently used as a

circadian marker rhythm because it is relatively easy to record and

the data can be analysed immediately. However, the most frequent

way to measure CBT, rectal temperature, causes subject discomfort.

Recently, eatable telemetric pills are also available for core

temperature recordings. Nevertheless, the recordings are limited

by the duration and dependent on intestinal transit. In addition, the

rhythm is also masked by factors like posture, physical activity,

meals, environmental light and temperature in both cases [2].

Rest-activity rhythm measurement by actimetry is a simple,

non-invasive method for indirectly evaluating the sleep-wake cycle.

Therefore, it can be considered a marker rhythm. But as occurs

with other methods, actimetry is subjected to masking and

artifacts, such as difficulties related to differentiating between the

onset of nocturnal rest and sensor removal for bathing before

going to bed, bed partner movements, sleeping when travelling in

a car or train, etc. [17,18]

Recently, our group proposed wrist skin temperature as a

possible alternative method for evaluating circadian system status

in humans under normal living conditions [10]. This rhythm is in

part the result of an alternating balance between parasympathetic

(vasodilation) and sympathetic (vasoconstriction) actions on

peripheral skin vessels, driven by the SCN [19–21]. Wrist skin

temperature increases during rest periods associated with sleep and

decreases during activity periods in proportion to the level of

arousal [10]. Again, the existence of masking factors such as

environmental temperature and posture reduces its accuracy when

used by itself to evaluate circadian function.

The existence of artifacts and different masking factors for all

the rhythmic variables considered to be circadian markers led us to

propose the use of a combination of three rhythmic variables for

ambulatory monitoring. Therefore, we propose, for the first time,

to integrate skin temperature, along with actimetry and body

position data into a single variable to evaluate the status of the

human circadian system under normal living conditions. This

simple, non-invasive and practical approach will encourage

clinicians to treat patients with circadian rhythm disorders and

facilitate chronotherapy individualization.

Methods

Study population
Forty-nine subjects volunteered for this study. They included 25

women and 24 men ranging from eighteen to forty years of age

(21.3064.44). All participants received appropriate information

about the study characteristics and signed an informed consent

form before their inclusion in the study. The study was approved

by the Ethics Committee of the University of Murcia.

Participants were recruited from among Biology and Medical

students. They were all healthy and presented no physical

conditions that disturbed their sleep (e.g. sleep apnea, asthma,

periodic limb movement, diabetes, etc.). Furthermore, they were

encouraged to maintain their normal life style during the week of

the study and were monitored under free-living conditions.

Rest and food schedules
Throughout the study, all subjects were instructed to keep a

sleep and food diary designed by the Chronobiology Lab at the

University of Murcia [10]. Participants were instructed to log the

following on a daily basis: the time they went to bed, the time of

lights off, nocturnal awakenings lasting more that 10 min, sleep

offset, the time they woke up, the time and duration of naps and

the time of onset for the three main meals.

Temperature rhythm
The wrist temperature rhythm was assessed continuously for 7

days using a temperature sensor (Thermochron iButton

DS1921H, Dallas, Maxim) with a sensitivity of 0.1uC and

programmed to sample every 10 minutes. It was attached to a

double-sided cotton sport wrist band, and the sensor surface was

placed over the inside of the wrist on the radial artery of the non-

dominant hand (Figure 1), as previously described [10].

Body position and rest-activity rhythm
The body position and rest-activity rhythm was assessed over the

same 7 days using an actimeter (Hobo Pendant G Acceleration Data

Logger, Massachusetts, USA) placed on the non-dominant arm by

means of a sports band, with its X-axis parallel to the humerus bone

(Figure 1). This actimeter was a three-channel logger with 8-bit

resolution that can record up to 21,800 combined X-, Y-, and Z-axis

acceleration and static position readings or internal logger events.

Author Summary

Faced with environmental cycles and daily alternation
between light and darkness, organisms have evolved a
time measuring mechanism, the biological clocks. Besides
following circadian rhythms, all physiological variables
must be coordinated with one another, like an orchestra
led by a conductor; if the appropriate rhythm is not kept,
noise rather than music is produced. In an organism, when
this temporal order is disrupted due to aging or shift work,
health is compromised. Afflictions include metabolic
syndrome, diabetes and cardiovascular diseases, among
others, or even worse prognosis of preexisting illnesses like
cancer. Since the circadian pacemaker (suprachiasmatic
nuclei) is located deep within the brain in humans, the
only way to evaluate its function is by assessing the output
signals, observing marker rhythms such as the sleep-wake
cycle, body temperature or activity. The problem is that
isolated variable measurement is not error free. However,
we can increase reliability by combining the information
from several circadian marker rhythms in an integrated
variable that we have called TAP (Temperature, Activity
and Position), a methodological approach that has not
been used before, that in conjunction with a new index
called Circadian Function Index, provides a useful tool for
standardizing the status of the circadian system.

A New Variable to Evaluate Circadian System
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This particular logger uses an internal three-axis accelerometer with

a range of 63g based on micro-machined silicon sensors consisting

of beams that deflect with acceleration. The sensor dimensions are

58633623 mm and it weighs 18g.

The sensor was programmed to record data every 30 seconds.

The information stored in the actimeter was transferred through

an optical USB Base Station (MAN-BASE-U-4, HOBO) to a

personal computer using the software provided by the manufac-

turer (HOBOware 2.2).

From the information provided by the actimeter, we defined 2

variables: motor activity (A) and body position (P). Motor activity,

expressed as degrees of change in position, was calculated at 30-s

intervals as the sum of the first derivative of the angle formed

between the current sensor position and its position 30 s before,

taking into account the X, Y and Z axes. Body position was

calculated as the angle between the X-axis of the actimeter and a

horizontal plane. Thus, P oscillated between 0u for maximum

horizontality and 90u for maximum verticality.

Data analysis
Since no marked differences by gender were detected (Student’s

t test), male and female data were pooled and analysed together

(note that the number of male and female was balanced).

Data processing
Firstly, data were filtered in order to eliminate erroneous

measurements, such as those produced by temporarily removing

the sensors. In order to obtain the same sampling frequency for all

variables for the purpose of computing TAP values, motor activity

and body position data were added up and averaged, respectively,

in 10-minute intervals (i.e., the sampling rate of wrist temperature).

However, motor activity was expressed as degrees of position

change per minute by dividing these previous values by 10.

Rest log data were converted into a binary code, in which 1

corresponded to a declared resting period and 0 to an activity

period.

TAP
In order to obtain TAP we first normalized the 3 variables (T, A

and P) by calculating the 95th and 5th percentiles for each variable

and volunteer. In a typical wrist temperature rhythm, the highest

values are seen at night when the subject is asleep and the lowest

values during the day when the subject is awake, whereas the

opposite occurs in the case of motor activity and body position.

Normalized wrist temperature values were therefore inverted, so

that the maximum values for all 3 variables occurred at the same

time of the day.

Figure 1. Body location of all sensors and simplistic representations of variables extracted. The activity data logger is placed in a sport
band, on the upper non-dominant arm and the temperature data logger on the wrist of the non-dominant hand. Here it is shown the three variables
selected for the study and a simplistic representation of their behaviour. Motor activity and body position show their higher levels during day-time,
when the subject is active. Wrist temperature (T) profile, on the contrary, show its higher levels during the night, when the subject is resting. Then, to
calculate TAP, we reversed T profile.
doi:10.1371/journal.pcbi.1000996.g001

A New Variable to Evaluate Circadian System
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In a third step, we calculated the mean of the 3 normalized

variables. Thus, 0 corresponded to complete rest and sleep, and 1

to periods of high arousal and movement.

TAP calculation was performed by using the next formula:

TAP~
(1-T)zAzP

3

Sensitivity, specificity and agreement rates
In order to objectively evaluate whether TAP improved the

accuracy of rest-activity deduction as compared to each variable

considered separately, we analyzed their correlation to rest

probability calculated from the rest-activity diaries. In order to

do so, we first had to determine the thresholds, for TAP and each

separate variable, above and below which a subject was considered

to be awake and resting, respectively. To that end, we calculated

the different thresholds for each of 6 randomly chosen subjects by

iteratively changing the threshold value in order to maximize the

agreement rate between the prediction and the corresponding rest-

activity diary. The values thus obtained for each variable were

then averaged in order to calculate the final thresholds that were

later applied to the whole group. If the value of a variable was

above its threshold, it scored 0 (meaning awake), and if the value

was under that threshold, it was assigned a score of 1 (resting).

Furthermore, specificity, sensitivity and agreement rates were also

calculated. Sensitivity reflected the probability of finding an actual

resting individual when the TAP score indicated rest. On the

contrary, specificity tried to find the probability of agreement

when a subject was actually active and our TAP variable also

scored a non-rest period. Finally, agreement rates represent the

proportion of periods scored as ‘‘rest’’ by TAP that are truly ‘‘rest’’

periods based on the sleep logs analysis.

Sensitivity~
Number of true rest events scored as rest by the variable

Events scored as restzEvents scored as activity

Specificity~
Number of true activity events scored as activity by the variable

Events scored as restzEvents scored as activity

Agreement rates~
Number of agreements between variable and sleep log

Number of events studied

In order to check whether these parameters were statistically

different between them obtained for every variable and TAP, we

performed x2 analysis.

Correlations between variables
Linear regressions were performed for TAP and each single

variable with respect to the rest periods indicated by the subjects.

Significant differences in these correlations were established

using a specific test (www.fon.hum.uva.nl/Service/Statistics/Two_

Correlations.html).

Temporal series analysis
In order to characterize the circadian pattern for TAP and each

single variable, we performed a non-parametric analysis (as

previously described [22]), including relative amplitude (RA),

interdaily stability (IS), intradaily variability (IV), the mean value

and timing of five consecutive hours with the lowest values (VL5

and L5 respectively) and the mean value and timing of ten

consecutive hours with the highest values (VM10 and M10,

respectively). IS quantified rhythm stability over different days. It

varied between 0 for Gaussian noise, and 1 for a perfect stability,

where the rhythm repeated itself exactly day after day. IV showed

the fragmentation of the rhythm; its values oscillated between 0

(when the wave was perfectly sinusoidal) and 2 (Gaussian noise).

RA referred to the difference between the VM10 and VL5,

divided by VM10+VL5.

In addition, we generated weekly representations for all

variables studied, as well as mean waveforms for every subject

and the group as a whole.

Besides, in order to further analyse CFI, its scores were

correlated to parametrical tests such as power content of the first

harmonic and percentage of variance explained by the rhythm in a

cosinor analysis, performed by the program El Temps (Diez

Noguera, 1999).

Circadian Function Index (CFI) configuration
CFI incorporates three parameters, IV, IS and RA, from the

TAP variable. IV values were inverted and normalized between 0

and 1, with 0 being a noise signal, and 1 a perfect sinusoid. Finally,

CFI was calculated as the average of these three parameters.

Consequently, CFI oscillates between 0 (absence of circadian

rhythmicity) and 1 (a robust circadian rhythm).

In this paper CFI has been calculated only for TAP. However, it

can be calculated for other variables such as temperature, activity

or position separately.

TAP and CFI simulations
In order to determine whether the TAP and CFI accurately

described circadian function, we performed a computational

simulation of TAP with different levels of noise and instability in

the rest-activity ratio. This kind of methodological approach allows

verifying whether CFI varies as expected depending on noise and

instability increases, as well as obtaining the corresponding

waveform of TAP.

On the one hand, TAP was simulated from a squared wave,

considering the activity phase as 66% of the total time of day. A

kind of noise present in biological signals, the fractal noise was

included in different percentages (from 0 to 100%) to simulate a

continuous gradient between normal and extreme situations.

Secondly, we performed these same simulations for a sinusoidal

waveform since many rhythms adjust to this kind of wave with two

levels of noise (0 and 60%).

Finally, we introduced a new parameter in the simulations

according to the instability in the ratio activity/rest for a squared

waveform. We chose a 20% in instability for two percentages of

noise, 0 and 60%.

Simulations were performed using the Syntesi program by Diez-

Noguera (Barcelona, 2007).

Results

A representative individual record from a normal-living subject

is shown in Figure 2, which includes weekly recordings (on the left)

and mean waveforms (on the right) for wrist temperature (2A),

motor activity (2B), body position (2C) and TAP (2D). As expected,

wrist temperature rose just before going to sleep (Figure 2A, right),

remained elevated over night and decreased after waking. Note

the close relationship between temperature increases and rest

episodes, except on the third and fourth nights, when the high

temperature period was longer than the rest period reported by the

subject. As expected, motor activity (Figure 2B) displayed higher

values during the day and lower values at night, when the subject

A New Variable to Evaluate Circadian System
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was resting. Likewise, body position (Figure 2C) reached values

close to 0u mainly at night, when the subject was resting and values

close to 90u when the subject was active during the day. Again, the

reported rest did not exactly match the low motor activity

(Figure 2B) and horizontal body position (Figure 2C) periods

during the third and fourth nights.

The integrated TAP variable is shown in Figure 2D. Each rest

period, whether diurnal or nocturnal, coincided with a series of

very low TAP values, and implied the coexistence of low activity,

horizontal position and high temperature; Figure 3 shows the

averaged results of the entire group for all rhythmic variables; with

weekly recordings shown on the left and the mean waveform on

the right. As expected, the average mean waveforms had smaller

amplitudes than the individual ones. However, the average pattern

of all variables agreed with the individual recordings previously

shown, with high values for motor activity (Figure 3B) and position

(Figure 3C) and low temperature values (Figure 3A) during the

day, and the opposite during the night. The wrist temperature

mean waveform (Figure 3A, right), on the other hand, was

characterized by a sharp increase before bedtime, a nocturnal

steady state coinciding with the sleep period and a pronounced

drop immediately after awakening. There was a secondary peak

around afternoon, a period associated with naps, and a dip

between 20:00–22:00 h, a period already known as the ‘‘wake

maintenance zone’’. An almost inverse pattern was observed for

motor activity and body position; however, no negative relation-

ship was observed between T and A or P, in the wake maintenance

zone.

The weekly average TAP data (Figure 3D, left) clearly showed

how rest periods do correlate with decreased TAP values, during

both the day and at night. The TAP mean waveform exhibited a

close inverse relationship with reported rest periods and was

characterized by a broad dip during sleep time, and a consistent,

but transient TAP dip around 16:00–17:00 h, following the

subjects’ usual lunch time and during their normal nap period.

Maximum TAP values were observed between 12:00–14:00 h and

Figure 2. Individual weekly recording of all variables. Wrist temperature (A) in red, motor activity (B) in green, body position (C) in orange and
TAP (D) in violet of a subject taken as an example, on the left. On the right it is represented the mean waveform of every variable for the same
subject. Shaded blue areas coincide with sleep declared by subjects. On the right every variable is represented as value 6 SEM.
doi:10.1371/journal.pcbi.1000996.g002

A New Variable to Evaluate Circadian System
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20:00–22:00 h. Again, TAP values started to decrease in advance

of bedtime.

In order to characterize the rhythmic patterns presented here, a

non-parametric analysis was performed, the results for which are

provided in Table 1. All variables exhibited similar IS values and

they all had a very low dispersion, which indicates a high degree of

similarity among the subjects. IV values, on the other hand, were

quite different depending on the variable. Motor activity presented

the highest IV, indicating a high level of fragmentation with

substantial variability between consecutive periods, whereas

temperature showed the lowest value. Motor activity was also

the variable that showed the highest RA.

The time of day (within a period of 5 consecutive hours) when

the variables presented the lowest values (L5) was very similar for

all of them. As expected, the midpoint of L5 took place during the

night, between 04:10 (for A) and 04:49 h (for P). This time can be

considered as a valuable phase reference for the circadian system,

and coincided with the maximum value of T and the center of the

sleep period. M10, the midpoint of the 10 consecutive hour period

(when the variable presents maximum values) and a phase marker

for the temporal location of the center of the activity period,

occurred at mid-day, although with wide dispersion among the

different variables (from 15:09 h for P to 17:21 h for T).

In order to objectively evaluate whether TAP improved the

accuracy of rest-activity prediction with respect to each variable

considered separately, we analyzed the correlation between rest

probability, as reported by the subjects in their logs, and

temperature, motor activity and body position (Figure 4). Sleep

Figure 3. Complete week recording for every variable evaluated for the entire experimental group. On the left it is shown the weekly
evolution of each variable and on the right its correspondent mean waveform. Wrist temperature (A) is represented in red, motor activity (B) in green,
body position (C) in orange and TAP (D) in violet. On the right, every point is represented as value 6 SEM. Please note that scales vary in mean
waveforms representations on the right and representations on the left lack of SEM for a better understanding.
doi:10.1371/journal.pcbi.1000996.g003

A New Variable to Evaluate Circadian System
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logs reliability was assessed by checking diaries’ compliance. We

found that an 81% of these logs contained all the information asked

and were filled in correctly for the whole study. A positive

correlation between wrist temperature and sleep as reported by

the subjects proved to be both very strong and significant (r = 0.973,

p,0.0001). This correlation was even stronger, albeit now negative,

for activity (r = 20.981, p,0.0001), position (r = 20.983,

p,0.0001) and TAP, this latter reaching the maximum value for

the correlation coefficient, (r = 20.993, p,0.0001). This improve-

ment for rest-activity deduction by TAP proved to be significantly

higher when compared with temperature (p = 0.0003), activity

(p = 0.0012) and position (p = 0.0121).

In order to determine whether TAP is a reliable marker capable

of accurately predicting rest-activity periods, we calculated

agreement rates and specificity and sensitivity tests comparing

the prediction from each variable (including TAP) and the rest

periods reported by the subjects (Table 2). Again, agreement rates,

as well as specificity and sensitivity results, reached their highest

values for TAP. TAP’s scores in sensitivity, specificity and

agreement rates were significantly different from each single

variable (except for body position in the sensitivity test), proving

again that TAP describes more accurately rest-activity rhythm

than separate variables (Table 3).

One step further into the study of the human circadian system by

means of non-invasive techniques was to devise a new quantitative

Circadian Function Index (CFI), consisting of three parameters

calculated based on the TAP non-parametric analysis. CFI scores

were then calculated for all subjects. Furthermore, all simulated

TAP series were also subjected to non-parametric analysis and CFI

calculation. Results are shown in figure 5, with both real and

simulated TAP values. It can be seen how increasing levels of noise

had the effect of lowering IS and RA values and increasing IV levels.

A close inverse relationship was observed between CFI and the

noise level in the simulated TAP. When introducing 20% of

instability in rest-activity ratio for two levels of noise (0 and 60%), we

can observe how CFI values decrease when the instability is

introduced, both under the 0 and 60% of noise conditions.

TAP patterns, non-parametrical analyses and CFI for two real

subjects (scoring the highest and the lowest CFI, respectively) have

been inserted in the figure between the simulations. CFI scores

perfectly matched TAP waveforms, with CFI values being

inversely related to the noise level. When focusing on the real

subject with CFI = 0.73, we can appreciate how his/her CFI

coincided with the 60% noise simulation. IS and IV values were

similar in both cases, whereas RA was much higher for the subject.

Small differences were found between the second real subject and

the 80% noise simulation. However, the graphic representations

for both matched quite closely.

Table 1. Non-parametric analysis for every measured variable
and TAP.

T A P TAP

mean ± sem mean ± sem mean ± sem mean ± sem

IS 0.4460.02 0.4160.01 0.5060.02 0.5560.02

IV 0.1960.01 0.7460.01 0.2960.02 0.2360.01

RA 0.5160.02 0.6960.02 0.5660.02 0.5660.02

L5 (hh:mm) 4:1660:13 4:1060:09 4:4960:23 4:1560:09

M10 (hh:mm) 17:2160:18 16:2560:16 15:0960:24 16:4560:14

VL5 0.2060.01 0.1060.01 0.2060.01 0.1460.03

VM10 0.6060.01 0.5260.01 0.7260.01 0.5060.08

Every result is expressed as value 6 SEM. T represents wrist temperature results,
A motor activity, P body position. IS refers to interdaily stability, IV to intradaily
variability, RA to relative amplitude, L5 to the time when the minimum 5 hours
average for every variable is found, M10 to the time when the maximum
10 hours average is found for every variable. VL5 and VM10 refer to every
variable value for L5 and M10. All variables except L5 and M10 are expressed in
arbitrary units.
doi:10.1371/journal.pcbi.1000996.t001

Figure 4. Correlations between every variable with respect to rest declared by subjects. Wrist temperature (A), motor activity (B), body
position (C) and TAP (D). Please note correlations coefficients and its probability value on the upper right of every pannel.
doi:10.1371/journal.pcbi.1000996.g004

A New Variable to Evaluate Circadian System
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As can be seen from this figure, the real subjects scored CFIs

between 0.73 (best) and 0.43 (worst). This shows a narrow band

within which a homogeneous real population should lie.

Also, we wanted to know whether CFI behaved as expected for

other types of waveforms and so we performed these simulations

on sinusoidal waves concerning only noise quantity. Again, CFI

decreases when the percentage of noise increases, proving that it is

very sensitive to circadian disturbances in the waveforms tested.

Finally, we performed correlations between CFI and two

parametrical tests that assumed a sinusoidal adjustment: power

content of the first harmonic and percentage of variance explained

by the rhythm in a cosinor analysis. We only found a strong

correlation between CFI and first harmonic (r = 0.532, p,0.001).

Correlation between CFI and percentage of variance was

r = 0.014, p = 0.919).

Discussion

Circadian chronodisruption constitutes a heterogeneous group

of circadian system impairments, but no objective examination

methods are currently being used for their clinical diagnosis in

humans. Thus, a new quantitative strategy for assessing circadian

system status will facilitate the development of clinical applications

of Chronobiology. The present study describes for the first time a

new variable, TAP, which integrates the simultaneous information

from: wrist temperature, motor activity and body position, in

addition to the implementation of a quantitative index for scoring

circadian robustness (CFI). TAP provides a reliable and accurate

assessment of human circadian system status and the ability to

detect rest-activity cycles in large populations under ambulatory

conditions.

We selected wrist temperature as part of our TAP variable

because it is the result of internal and external influences and

provides integrated information about the master pacemaker

function and internal and external zeitgebers. In our study, high

wrist temperature is closely linked to sleepiness, probably through

parasympathetic activation and skin blood vessels vasodilation,

while it drops during arousal periods, associated with sympathetic

activation and vasoconstriction [23]. The temperature rhythm

minimum, occurring between 20:00–22:00h, a period previously

known as ‘‘wake maintenance zone’’ that coincides with the start

of the nocturnal melatonin surge, dim light melatonin onset

(DLMO) [24], and could be used as a reliable phase marker for

circadian system timing. In spite of this, however, wrist

temperature is the single variable that showed the lowest

correlation, agreement rates, sensitivity and specificity values for

rest-activity prediction, probably because of its endogenous

component, which makes it more difficult to be modified by the

subject’s voluntary activity than other variables such as motor

activity and body position. This endogenous character can also be

inferred from the existence of a temperature increase anticipation

prior to sleep time, as described in the results.

Actimetry has been proposed as a substitute for other complex,

expensive methodologies such as polysomnography or core body

temperature to evaluate circadian system status in humans [11]. A

number of studies with patients support the importance of a robust

day-night rhythm in order to remain healthy. For example, in

patients with metastatic colorectal cancer, a marked rest-activity

rhythm as recorded by actigraphy was associated with better

quality of life and better survival rates [25].

Furthermore, to the best of our knowledge, body position has

never been used in the assessment of human circadian function-

ality, mainly because most actimeters are placed on the wrist.

Since we placed the actimeter aligned with the arm, we were able

to differentiate between when the subject is in and out of bed.

Analyzed separately, motor activity and body position showed

higher correlations and agreement rates (as well as specificity and

sensitivity values) with the rest-activity periods reported by subjects

than wrist temperature did. This is not surprising, considering that

both variables respond to sleep and their values vary dramatically

at the exact moment of waking up or lying down. These variables

are less dependent on the endogenous component of the circadian

system than the wrist temperature rhythm.

However, each variable individually introduces specific artifacts,

as being influenced by several external signals. Thus, the use of an

integrative variable combining the study of several variables allows

to correct mistakes attributable to the interpretation of single

variables. For example, the masking effects of sleep on temper-

ature can be eliminated by taking into account motor activity [26].

It is true that when averaging T, A and P, we can occasionally lose

information from isolated variables. Nevertheless, TAP does not

exclude the possibility of parallel single variable analysis in some

cases. Then, if we needed to determine the precise time to go to

bed, body position analysis by itself would be useful. If, in addition,

Table 3. Contingency tables, chi squared and p values for sensitivity, specificity and agreement rates results presented in Table 2.

Sensitivity Specificity Agreement rates

x2 = 1680.330 (p,0.00005) x2 = 1419.116 (p,0.00005) x2 = 1414.011 (p,0.00005)

T 10054 8372+ 27064 8372+ 37118 11699+

A 11014 7912+ 26564 7912+ 37578 11239+

P 11991 7166 26333 7166+ 38324 10493+

TAP 12776+ 4388 28669+ 4388 41445+ 7372

T refers to wrist temperature, A to motor activity, P to body position and TAP to the integrated variable, (see table 2 for more information).
doi:10.1371/journal.pcbi.1000996.t003

Table 2. Sensitivity, specificity and agreement rates results.

Sensitivity Specificity Agreement rates

T 0.5500 0.7600 0.8160

A 0.5800 0.7700 0.8261

P 0.6300 0.7900 0.8425

TAP 0.7400 0.8700 0.9043

T refers to wrist temperature, A to motor activity, P to body position and TAP to
the integrated variable. For further information in statistical differences among
these parameters, please see tables of contingency in the supporting file
information’s section.
doi:10.1371/journal.pcbi.1000996.t002
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temperature is high and activity is low, it would indicate that the

subject is not only lying, but sleeping.

When considering non-parametric analysis, it should be stressed

that the timing of L5 was very stable for all variables studied. It

took place around 4 AM, during the second half of the night, when

REM sleep (characterized by minimum muscle tone [27,28]), is

more likely to occur and melatonin reaches its nocturnal peak

[29]. This was the time when the greatest homogeneity among

subjects was found.

Despite the fact that motor activity and body position showed

good rates of agreement and a high correlation with rest as

reported by the subjects, these results improved even further for

the integrated TAP variable (with an agreement rate of 90.43%

and r = 0.993), which would indicate that TAP is able to deduct

rest-activity periods more reliably than any of the separate

variables by themselves. As also expected, sensitivity and specificity

results were better for TAP than for single variables. Other authors

have found high levels of sensitivity (the ability to detect sleep) but

low levels of specificity (the ability to detect wake states) [30–32]

when actigraphy was compared with polysomnography (PSG).

This is due to the fact that in these studies, PSG was performed

over one night only. During these few hours, the subjects spent

most of their time sleeping, which is why the results of the

sensitivity tests for actigraphy were so high. In our work, however,

we found not only high levels of sensitivity (mean = 0.74), but also

high levels of specificity (mean = 0.87), in spite of the fact that we

expanded our analysis over a period of 7 days and considered both

nocturnal and diurnal reported rest. These results indicate that our

TAP variable is very reliable for detecting rest, but also very

consistent for identifying wake states. This is in contrast to the

results of Wang et al. [33], for example, who found a sensitivity of

0.95 and a specificity of 0.41 when comparing actimetry to PSG

during a single night.

All correlation factors, agreement rates and specificity-sensitivity

values were compared to the rest-activity diaries. These logs had

the advantage of allowing subjects to record information at the

same time that the event actually took place. However, they did

not always prove to be an objective measure of sleep timing, and

they were dependent upon the subject’s willingness to complete

them correctly [18], an 81% in our study.We are aware that one

limitation of our study is the fact that PSG was not used as a

reference for sleep evaluation; however, our main objective was

not merely to determine sleep parameters, but rather to evaluate

the circadian system status in free-living subjects during a

representative period of their lives. In this regard, it has been

suggested that PSG may not be the best method to which

subjective sleep evaluation tools should be compared [34].

Nevertheless agreement rates as ours, varying from 88% to

97%, have been described [35].

Another factor to consider is that in order to improve the ability

of actigraphy to predict sleep periods, most commercial brands of

actimeters have developed complex algorithms adapted to a

specific population; however, the use of highly specific algorithms

impairs sleep detection when studying other age groups or patients

with different medical conditions, making inter-group comparisons

very difficult. For example, a decrease in the accuracy of actimetry

for sleep detection was seen in a study of patients with neurological

and other medical conditions associated with ageing [17]. In

addition, it has also been suggested that actigraphy needs further

improvement in order to accurately evaluate sleep-wake cycles in

newborns [36].

The TAP variable allows us to predict rest-activity periods very

accurately. In this sense, we strongly believe that our method allow

us getting rid of sleep logs, subjected to volunteers’ degree of

compliance.

Dichotomy indexes such as I,O, I.O and autocorrelation

indexes used as indicators of the circadian system status have been

successfully correlated to pathological states such as cognitive

deficits [4], colorectal cancer outcomes [26] and shift work [11].

However, these indexes only provide partial information about the

rest-activity ratio in and out of bed, and exclude other significant

sources of information. Therefore, we decided to create an index,

CFI, based on three circadian parameters, each one providing

complementary information about the circadian system. Interdaily

stability [37] indicates the regularity of the day-to-day TAP

pattern. Intradaily variability, a measure of the fragmentation of

the rest-activity rhythm, is more dependent on endogenous

circadian disturbances. It shows a moderate correlation with

functional, social and emotional well-being. For example,

fragmentation increases in association with dementia, cognitive

deficits, etc [37]. Finally, amplitude is the result of both internal

and external influences. Amplitude is high in subjects with a

healthy circadian system and who have a stable daily routine. CFI

allows us to classify the circadian system status of a population

according to the overall TAP rhythm.

CFI proved to be very accurate when trying to define the

subjects’ circadian status and responds as expected (decreasing)

when instability and noise of the rest-activity ratio increases. Next

step in the study of TAP will imply populations with circadian

disturbances, such as the elderly, shift workers, cancer patients,…

where a reduced amplitude and higher fragmentation in their

TAP rhythm would be expected.

In conclusion, our results show that the TAP variable, which

combines information from temperature, actimetry and position,

constitutes a step forward in the ambulatory evaluation of

circadian system status in humans. TAP provides information

about the status of the circadian system because it includes a

variable with a large endogenous component (temperature), but

also variables that are more reactive to behavioral demands, such

as motor activity and body position. Furthermore, CFI allows for

the quantitative classification of populations and provides

important information about the circadian timing system, which

facilitates the objective evaluation of the efficacy of treatments to

improve chronodisruption.
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